DGX ユーザー 導入事例
[2019.06]
ディープラーニング(深層学習)や機械学習などのAI技術を中心とした“最高峰”の先端技術を活用し、クライアントが求めるビジネスの“最高峰”をともに目指すRidge-i。
社名にある「Ridge」は「峰・山の背・尾根」などを意味するが、“最高峰”を目指す様々な想いがぶつかり合って生まれるRidgeを登りきることで「クライアントの望みを叶える、革新的なソリューションが生み出せる」と、Ridge-iを立ち上げた代表取締役社長の柳原尚史氏は社名の由来を説明する。
社名にある「Ridge」は「峰・山の背・尾根」などを意味するが、“最高峰”を目指す様々な想いがぶつかり合って生まれるRidgeを登りきることで「クライアントの望みを叶える、革新的なソリューションが生み出せる」と、Ridge-iを立ち上げた代表取締役社長の柳原尚史氏は社名の由来を説明する。
金融よりも他の分野で活用したほうが面白い!
エンジニアとしての技術力とともに、経営者としてのマインドや視点にも優れている柳原氏。
その経歴はなかなか個性的で、まず生まれ育った家庭からしても、祖母は100人規模の印刷業を営む実業家、母親は漫画家兼絵本作家、父親は中国語教師という環境だ。
「プロフェッショナルの姿勢を、さまざまな観点から教え込まれました」と、子ども時代を振り返る。このような環境の中、小学4年生の時には自宅にやってきたパソコンを使ってプログラミングをスタート。中学・高校時代には、祖母の印刷工場のシステムやネットワークを一人で構築するまでになったそうだ。さらに、大学4年生のときには大手ゲーム会社で人気ゲームの制作にも携わったという。
その経歴はなかなか個性的で、まず生まれ育った家庭からしても、祖母は100人規模の印刷業を営む実業家、母親は漫画家兼絵本作家、父親は中国語教師という環境だ。
「プロフェッショナルの姿勢を、さまざまな観点から教え込まれました」と、子ども時代を振り返る。このような環境の中、小学4年生の時には自宅にやってきたパソコンを使ってプログラミングをスタート。中学・高校時代には、祖母の印刷工場のシステムやネットワークを一人で構築するまでになったそうだ。さらに、大学4年生のときには大手ゲーム会社で人気ゲームの制作にも携わったという。
こういった経験から柳原氏が感じたのは「大学を卒業してそのまま起業するよりも、大企業の仕組みもしっかり学びたい」という思いだ。その当時から「将来的に起業したい」と考えていたが、そのためには実家の小さな企業だけではなく「社会を動かしているような大企業の仕組みを学んでから起業した方が絶対に大きい事ができると考えました」(柳原氏)。
大学を卒業した柳原氏は大手通信会社に新卒で入社。その後は国内外の大手金融機
関を数社渡り歩き、さまざまな先端技術とともに多彩なビジネスの知識や経験を培っていった。さらに、技術とビジネスの間にさまざまなギャップが存在するなかで、「それを埋めることに、自分のバリューや社会的なニーズがある」と気づかされたという。
大学を卒業した柳原氏は大手通信会社に新卒で入社。その後は国内外の大手金融機
関を数社渡り歩き、さまざまな先端技術とともに多彩なビジネスの知識や経験を培っていった。さらに、技術とビジネスの間にさまざまなギャップが存在するなかで、「それを埋めることに、自分のバリューや社会的なニーズがある」と気づかされたという。
この気づきとともに、2013年頃に出会ったディープラーニングが、柳原氏の人生を動かした。その当時はまだ金融業界で働いていたが、「ディープラーニングはとにかく凄い技術ではあるものの、必ずしも金融向きとは言い難い。きっと、金融以外で活用した方が面白いのではないか」と感じたのだ。
そこで、「ディープラーニングのように、未解決の社会課題が解ける高い可能性を秘めた先端技術を、ビジネス側の人たちにもしっかり届けられるような組織を作りたい」と考え、2016年にRidge-iの起業に踏み切った。
そこで、「ディープラーニングのように、未解決の社会課題が解ける高い可能性を秘めた先端技術を、ビジネス側の人たちにもしっかり届けられるような組織を作りたい」と考え、2016年にRidge-iの起業に踏み切った。
カスタムメイドで顧客が求めるクオリティを目指す
これまでにRidge-iは、ディープラーニングを活用して「ごみ焼却工場でのAI活用(セグメンテーション)」や「外観検査・キズ・不良箇所検出」、「衛星データ(SAR)によるオイル流出検出」、「白黒画像のカラー化」などのプロジェクトを手掛けてきた。
市場としても、最近はこれまで以上にAIやディープラーニングに関心を示す企業が増えており、プロジェクトの依頼やAIなどに関する相談が増加傾向にあるほか、プロジェクト自体の規模も拡大しているそうだ。そういった状況にあって、柳原氏が重視するのは、単にディープラーニングを利用したソリューションを提供するのではなく、ビジネスの視点から「顧客の要望を可能な限り叶える」ようなソリューションを提供するという点だ。
「マーケティングの面から見ると、汎用的なシステムを広範囲に提供する方が効率はいいでしょう。しかし、ディープラーニング自体がまだ黎明期ということもあり、カスタムメイドでなければビジネスで求められる高いクオリティは出せません。実際、汎用的なシステムで画像の認識・分類を試みたこともありましたが、顧客の満足度は決して高いものではありませんでした。まさに『多目的は無目的』なのです」(柳原氏)
市場としても、最近はこれまで以上にAIやディープラーニングに関心を示す企業が増えており、プロジェクトの依頼やAIなどに関する相談が増加傾向にあるほか、プロジェクト自体の規模も拡大しているそうだ。そういった状況にあって、柳原氏が重視するのは、単にディープラーニングを利用したソリューションを提供するのではなく、ビジネスの視点から「顧客の要望を可能な限り叶える」ようなソリューションを提供するという点だ。
「マーケティングの面から見ると、汎用的なシステムを広範囲に提供する方が効率はいいでしょう。しかし、ディープラーニング自体がまだ黎明期ということもあり、カスタムメイドでなければビジネスで求められる高いクオリティは出せません。実際、汎用的なシステムで画像の認識・分類を試みたこともありましたが、顧客の満足度は決して高いものではありませんでした。まさに『多目的は無目的』なのです」(柳原氏)
さらに、近年は扱う画像枚数が増加し、高解像度画像や動画の需要も増えていることから、ハイスペックな環境があるに越したことはない。
また、Ridge-iではディープラーニングに関する新しい論文や文献が掲載されるとその実装と再現を試みるが、現在の環境では計算リソースの制約によって実現できないケースも出始めてきた。
状況的に「GeForce GTX 1080 Tiの環境では力不足が否めなかった」(阿部氏)ことから、NVIDIA Tesla V100を16枚搭載する「NVIDIA DGX-2」を2018年12月に導入することとなった。
また、Ridge-iではディープラーニングに関する新しい論文や文献が掲載されるとその実装と再現を試みるが、現在の環境では計算リソースの制約によって実現できないケースも出始めてきた。
状況的に「GeForce GTX 1080 Tiの環境では力不足が否めなかった」(阿部氏)ことから、NVIDIA Tesla V100を16枚搭載する「NVIDIA DGX-2」を2018年12月に導入することとなった。
処理能力は4.5倍に高速化! 心理的な部分もメリットに
NVIDIA Tesla V100を16枚搭載するNVIDIA DGX-2
は、社外のデータセンターに設置されている |
以前に手掛けた異常検知のプロジェクトにおいて、GAN(Generative Adversarial Network)や VAE(Variational Autoencoder)に近い画像生成をGeForce GTX 1080 Ti×4基のサーバーで処理したところ、約180時間かかったそうだ。
しかし、同じ画像生成をNVIDIA DGX-2で処理したところ、わずか40時間ほどで終了。 柳原氏は「複数GPUの分散処理環境の構築に手間取っていたが、NVSwitchですぐにそのメリットを享受できた。入出力の環境などが異なるので純粋なGPUの性能比較ではないが、単純に比較して4.5倍も高速化できたのは非常に大きい」と絶賛し、「1週間かかっていたものが1日半で終わるわけですから、その時間で別のクリエイティブな作業ができるのは非常に魅力的です」と笑みをこぼす。 |
一方で、阿部氏はエンジニアの観点から、自社で高性能なGPUコンピューティングの環境を用意するメリットを指摘する。というのも、NVIDIA DGX-2の導入にあたっては、GPU環境をクラウドで提供するサービスの利用も候補のひとつとして検討していたからだ。
「クラウドサービスは便利な部分も多いですが、GPUを『利用した分だけ課金される』という仕組みは、エンジニアにとっては意外にネックでした。
そもそも、GPUのクラウドサービスの利用料は、決して低価格とはいえません。それだけに、仮にチャレンジしたいことがあっても、課金による心理的な影響がブレーキになってしまう懸念があったのです。そういった背景も踏まえると、試したいことを可能な限りチャレンジできるNVIDIA DGX-2は、コスト面からも運用面からもベストでした」(阿部氏)
「クラウドサービスは便利な部分も多いですが、GPUを『利用した分だけ課金される』という仕組みは、エンジニアにとっては意外にネックでした。
そもそも、GPUのクラウドサービスの利用料は、決して低価格とはいえません。それだけに、仮にチャレンジしたいことがあっても、課金による心理的な影響がブレーキになってしまう懸念があったのです。そういった背景も踏まえると、試したいことを可能な限りチャレンジできるNVIDIA DGX-2は、コスト面からも運用面からもベストでした」(阿部氏)
今後も、さらなる活用が見込まれるディープラーニング。
Ridge-iとしては「経済的・社会的に大きなインパクトが見込める分野」「技術的に相性がよく、すぐに効果が出せる分野」「未開拓で、新しい技術を生み出せる分野」という3つを今後の軸に据えている。 例えば、「宇宙」はディープラーニングとの相性が良いことから注力している分野のひとつで、2019年4月からはJAXAとのプロジェクトも始まっている。 「衛星画像の解析は、プレーヤーがまだ少ないのでチャンスだと感じています。とはいえ、この分野に限らず、試してみないとわからないことが多いのも事実。NVIDIADGX-2でより多くのトライ&エラーを重ね、今後も顧客にとってのベストなソリューションを提供していきます」(柳原氏) |
衛星画像を解析し、土砂崩れが起きている場所をディープラーニングで検出したプロジェクトの事例。予測画像(左)と実際の画像(右)を比較すると、約80%の高精度で検出できている
|
※掲載の事例は当組合員各社を通じてお取引させて頂いたものとなります。