DGX ユーザー 導入事例
[2017.12]
これらのサービスにおいて、情報の精度を高めるためにはより多くのデータを処理する必要がある。その一方で、データが豊富に存在しても、データの処理を最適化するまでの時間がかかり過ぎていてはビジネスとして成り立たない。
「結果の積み重ねが、AIの進化に重要なことは言うまでもないことだ。さらに、それに要する時間をどれだけ短くすることができるか。これも無視することのできない大切なポイントとなる。だからこそ、GPUで膨大な計算を高速に処理できるNVIDIA DGX-1は、AIを使ったサービスに欠かすことのできない存在といえる」(大松氏)
「結果の積み重ねが、AIの進化に重要なことは言うまでもないことだ。さらに、それに要する時間をどれだけ短くすることができるか。これも無視することのできない大切なポイントとなる。だからこそ、GPUで膨大な計算を高速に処理できるNVIDIA DGX-1は、AIを使ったサービスに欠かすことのできない存在といえる」(大松氏)
Tesla P100を8基搭載したNVIDIA DGX-1
|
GoogleとNVIDIAの動きからGPUの可能性を感じ取った大松氏がGPUコンピューティングに関心も持ったきっかけは、2016年に開催された「Google Cloud Platform Global User Conference」にある。
そこで発表された内容や元CEOのエリック・シュミット氏の講演から、「GoogleはいまGPUに注目している」と啓発されたそうだ。 さらに同年、NVIDIAがカリフォルニア州サンノゼで開催したイベント「GPU Technology Conference(GTC)」に参加したところ、CEOのジェン・スン・フアン氏が具体的な事例とともにディープラーニング向けの自社製GPUワークステーションを発表した。 |
このGoogleとNVIDIAの動きに、大松氏はGPUコンピューティングの可能性をいち早く感じ取ったという。そして、GTCの会場で即座にこのGPUワークステーションの購入を申し込んだ。とはいえ、初期モデルは何かと技術的な要求や課題が多い時期にあるため、自力での対応に苦労を重ねたこともあったとのこと。しかし、大松氏は「それが経験となって後々に生きてくる」と語り、他社よりも先んじて先進的な取り組みに対応することの重要性を指摘する。
実際、大松氏は現在のようにAIに注目が集まる前からGPUをベースとしたコンピューティングに携わってきたことで、豊富な知識とノウハウを身につけてきた。そのため、ハードウェアの準備やベースとなる部分のセッティングはベンダーに任せるものの、システム構築のほとんどを自社でこなすまでに至っている。
実際、大松氏は現在のようにAIに注目が集まる前からGPUをベースとしたコンピューティングに携わってきたことで、豊富な知識とノウハウを身につけてきた。そのため、ハードウェアの準備やベースとなる部分のセッティングはベンダーに任せるものの、システム構築のほとんどを自社でこなすまでに至っている。
そのレベルの高さは、NVIDIA DGX-1の提供元であるNVIDIAの山田泰永氏も一目置くほどだ。
「近年はAIのビジネス利用が広まったことで、ディープラーニング向けを標榜するサーバーが数多く登場しているものの、それを自分の手足のように扱える人材はそれほど多くない。そんななか、デエイアイグノシスさんは高性能かつ運用管理が容易なNVIDIA純正のアプライアンスであるNVIDIA DGX-1にいち早く着目して導入。しかも、外部に頼ることなく独自に研究開発を続けている点は『さすが』と言う他はない」(山田氏) |
エヌビディア エンタープライズ事業部 マネージャー メディカル・ライフサイエンスビジネス責任者兼スタートアップ・技術パートナー支援担当 山田 泰永 氏
|
このようにデータ量が増えていけば、それだけ情報の裏付けも取りやすくなるため価値は上がっていく。その一方で、機械学習の負荷は
より一層増すことになるだろう。そのため、仮に価値が上がったとしても、そのための計算時間が数か月もかかるようでは問題だ。
その点、NVIDIA DGX-1のような高性能ワークステーションがあれば心配はいらない。大松氏も「NVIDIA DGX-1ならプログラム次第で大規模な計算でも数時間、簡単なものなら数分で終わる」と太鼓判を押す。さらに「次のことをどんどん進めていかないと可能性は広がらない。いま進んでいる方向が間違っている可能性もあるため、スピード感は重要だ」とその必要性を後押しする。
より一層増すことになるだろう。そのため、仮に価値が上がったとしても、そのための計算時間が数か月もかかるようでは問題だ。
その点、NVIDIA DGX-1のような高性能ワークステーションがあれば心配はいらない。大松氏も「NVIDIA DGX-1ならプログラム次第で大規模な計算でも数時間、簡単なものなら数分で終わる」と太鼓判を押す。さらに「次のことをどんどん進めていかないと可能性は広がらない。いま進んでいる方向が間違っている可能性もあるため、スピード感は重要だ」とその必要性を後押しする。
そのほか、NVIDIA DGX-1はハードウェアやOSに加えて、仮想環境のNV-Dockerや「TensorFlow」「Caffe」「CNTK」「Theano」「MXNet」といったディープラーニング関連のフレームワークを動作確認済みで用意する。トータルコーディネートされた形で提供されるため、運用面でのメリットは大きい。
また、デエイアイグノシスでは仮想環境での複数ジョブ管理において「コンテナごとに利用するGPUを手動で指定している」(大松氏)のだが、NVIDIAの山崎和博氏は「例えば、Apache Mesosは複数GPUのジョブ管理に対応している」と助言し、さらなる効率的な運用をサポートする。 |
エヌビディア ディープラーニング ソリューション アーキテクト
山崎 和博 氏 |
とはいえ、オンプレミスで高性能なGPUワークステーションを持つことは容易ではない。そのため、Googleなどのクラウドサービスを活用してやる方が「当座のメリットは高い」という考え方もあるだろう。しかし、大松氏の考えは違う。
「計算のプロセスと結果だけが早くわかっても、それは我々の開発思想にフィットしない。処理工程の中身をしっかり把握して理解することが重要であり、それが次のプログラミング開発に生かせるからだ。その上で、クラウドサービスともやり取りが容易になる。
そういった意味でも、GPUワークステーションは重要な存在だと認識している。総合的に見て、我々のやりたいことを最短で実現してくれる最強のワークステーションはNVIDIA DGX-1に他ならない」(大松氏)
「計算のプロセスと結果だけが早くわかっても、それは我々の開発思想にフィットしない。処理工程の中身をしっかり把握して理解することが重要であり、それが次のプログラミング開発に生かせるからだ。その上で、クラウドサービスともやり取りが容易になる。
そういった意味でも、GPUワークステーションは重要な存在だと認識している。総合的に見て、我々のやりたいことを最短で実現してくれる最強のワークステーションはNVIDIA DGX-1に他ならない」(大松氏)
※掲載の事例は当組合員各社を通じてお取引させて頂いたものとなります。